If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+2x-105=0
a = 8; b = 2; c = -105;
Δ = b2-4ac
Δ = 22-4·8·(-105)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-58}{2*8}=\frac{-60}{16} =-3+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+58}{2*8}=\frac{56}{16} =3+1/2 $
| p=2(14)+2(3) | | 133=5x+2x | | -28x-5=2 | | 15x2-31x-14=0 | | 4-(-h)=13 | | 5x+8=4x+33 | | m+12/7=6 | | 12t+10=-55 | | 4x-3=6(2+1/2x) | | -3.66-k=6.75 | | -48+12+x=-24 | | 20x+5=-5 | | 34=35*0.24+0.24x+0.18x+35*0.16 | | 3(r-82)=36 | | 3x^2+4x=7-2x^2+9x=7 | | 3(r−82)=36 | | r^2=50 | | 2x+144=7x-6 | | -35=y/4 | | 7/21=x/42 | | 320=2000•r•2 | | 20−4p=8 | | s/5-2=7 | | 2a+2(.5a)=100 | | x^2-175x+7500=0 | | 12-(x+3)=4(2-x)+4 | | 8-(x+1)=9-(2x-1) | | 8x—2=-9+7x | | 35=6v-v | | 4=j/5-1 | | (r-5)(r+5)=25 | | 20=0.24x+0.18x |